## Sustainable Construction for the Cargo Handling Terminal of the Future



June 6, 2006



#### Road to Sustainable Construction

#### • 1970 NEPA

- Short term Impacts
- Mitigation Measures
- 1990 Environmental Management Systems
  - SE & SC
  - HTRW Demolition Wastes
  - In-water construction
- Culture of Sustainability
  - 20 of 69 LEED Rating Points from construction
  - Role in additional 21 points



## Role of Construction Practices in Project Sustainability

Material Conservation Natural Resource Enhancement Environmental Permit Conditions



#### A Contractor's View---

#### • Unknown + Fear = \$

#### • Understanding + Culture of Sustainability

#### = Profits



## Management Systems

- Contracting Mechanisms
  - Design-Bid-Build
  - IDIQ
  - Design Build
  - Public Bidding Rules
  - Construction Manager
- Bring Contractor into Project Team Early
- Integrated Design/Construction Action Plan
- Worker/Subcontractor Training
- Continuous Monitoring and Reporting
- Documentation





#### Schedule Efficiency-

- Coordinate multiple projects/contracts
- Reduce time of open surface
- Reduce active equipment time
- Better for the environment
- Better for the bank book





#### Schedule -

## Use technology to expedite –





# Waste Reduction

- 75% of building construction raw materials end up as waste
- Waste management as part of the integrative design process
  - Direct reuse and recycling
  - Source separated materials
  - Goal of 75% Reuse/Recycle
- Clear direction in specifications
- Jobsite orientation and monitoring



#### Materials Management

- Contaminated soils/groundwater

   Treatment
   Transport/dispose
   Cap onsite

   Soils
  - Onsite
    - Onsite reuse of borrow
    - Regional plan for reuse





#### Paving – Environmental Considerations

- Water based asphalt
- Oil based asphalt
- Partial paving; unpaved
- Air Quality Issues
- Water Quality Issues



Structural and Maintenance Requirements
 Make a proactive choice with involvement of designer, contractor, and O&M personnel

#### **Construction Impacts**

- Reduce Air Emissions
  - Technology
  - Scheduling
  - Credits



- Early Implementation of Storm Water BMPs
  - Reinforced grass surface instead of impervious areas
  - Green roofs for warehouse structures
  - Reduce curb and gutter construction by using sheet flow
  - End of pipe treatment using hydrodynamics separators to control trash, oil, grease, sand, and metals
     Underground sand filter or water quality treatment system

  - Roof disconnection by conveyance to grass areas

## Natural Resource Enhancement Storm Water Management





# Permit Compliance

- Multi-agency permit conditions
- Multiple contractors responsible for compliance
- Create a compliance program that simplifies steps for reporting
- Unify system for multiple contractors







#### Society

First Impressions are lasting

Actively plan construction infrastructure

 For example: Dulles Airport Capital Development Program includes formal infrastructure development process-



## **Construction Infrastructure**

- Contractor Staging areas
- Batch plants
- Access and traffic routing
- Increased gate capacity
- Material Storage







#### **Construction Infrastructure**

Consciously site these facilities to contribute to finished project/not conflict
Avoid incidental infractions of environmental regulations
Avoid offsite traffic issues
Avoid interference with ongoing operations



#### Security

- DoD Antiterrorism Standards and Whole Building Design Guide Conflicts
  - Standoff
     Distance
  - Unobstructed
     Space
  - Structured Parking
  - Materials Reuse/Recycled

| LEED ® Credit<br>Sustainable Sites |                                                                 | Antiterrorism Standard |   |   |   |   |   |   |   |   |    |    |    |    |    | ī |
|------------------------------------|-----------------------------------------------------------------|------------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|---|
|                                    |                                                                 | 1                      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | I |
| SS-P1                              | Erosion & Sedimentation Control                                 |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | Ī |
| <u>SS-1</u>                        | Site Selection                                                  |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | ŕ |
| <u>SS-2</u>                        | Development Density                                             |                        |   |   |   |   |   |   |   |   | Í  |    | Γ  |    |    | Ť |
| <u>SS-3</u>                        | Brownfield Redevelopment                                        | Ē                      |   |   |   |   |   |   |   |   |    |    |    | Ĺ  |    | Ť |
| <u>SS-4.1</u>                      | Alternative Transportation, Public<br>Transportation Access     |                        |   |   |   |   |   |   |   |   | Γ  |    |    |    |    | ĺ |
| <u>SS-4.2</u>                      | Alternative Transportation, Bicycle<br>Storage & Changing Rooms |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | Ĩ |
| <u>SS-4.3</u>                      | Alternative Transportation, Alternative<br>Fuel Vehicles        |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | T |
| <u>SS-4.4</u>                      | Alternative Transportation, Parking<br>Capacity                 |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | Γ |
| <u>SS-5.1</u>                      | Reduced Site Disturbance, Protect or Restore Open Space         |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | ſ |
| <u>SS-5.2</u>                      | Reduced Site Disturbance,<br>Development Footprint              |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | Γ |
| <u>SS-6.1</u>                      | Stormwater Management, Rate and<br>Quantity                     |                        |   |   |   |   |   |   |   |   |    |    |    |    |    | T |

Busy Port Specific
 Standards More Appropriate

#### Understanding

+

#### Culture of Sustainability =

Productivity and Security





# Water Side Sustainable Construction Practices: Long Term Sustainable Dredging Strategies

Water Quality: Sustainable Maintenance of Navigable Waterways are achieved through:

a. Holistic and Life Cycle
Understanding of the
Watershed/Ecosystem
that has created the sediments
and is now going to be
Impacted by Removing the Sediments



# Sustainable Dredging Strategies: Green Dredging Equipment

- High efficiency dredge or slurry pumps
- High accuracy (metered) winch systems with high holding power and anchor systems
- De-gassing equipment
- Hopper overflow controls
- Special dragheads with cutters, visors and turbidity control
- Swell compensators
- Dredging & production computers with nuclear density and flow measurement

gauges for concentration monitoring



## Environmental Dredging Equipment:



- Is highly efficient in terms of dredging, containment & transport (eg. cutting & pumping or excavating, containing & disposal)
- Has the ability to reduce the amount of dilution by maintaining dredged density and limiting water content
- Has the means to position itself very accurately and remove material in a controlled & precise manner
- Is fitted with sophisticated Kinematic DGPS positioning, dredging computers, production & other data logging equipment often radio linked to a shore station.
   Limits or reduces turbidity significantly

# Sustainable Dredge Materials Management Strategies

- Consider Developing Holistic Dredge Materials Management Plans
- Look beyond the Project Scope and Needs
- Consider beneficial Upland use of Suitable Sediments
   Consider Developing RSM partnerships & arrangements with Corp, etc





## Sustainable Dredge Materials Management Strategies

- Sustainable Use of Different Sediments:
- Rock Materials: Create Fishing Reefs
- Suitable Materials: Beach Nourishment (Sand Only)
- Wetlands and Sub aquatic habitat creation (restricted to certain types of materials)
- Unsuitable Materials: Processed to Cap Brownfields/Portfields as well as Regional landfills.

# Processing Dredge Materials: Stabilization/Solidification, ETC



# Sustainable Regional Sediment Management: RSM

 Partner with the USACE in pursuing RSM by collaborating with local and state governments to manage sediments over regions encompassing multiple projects.



# Sustainable Dredging

#### • Air Quality:

In order to reduce emissions of NOx and PM from Dredging Operations/Equipment:

Consider clean diesel fuel dredges in the contract; or

Consider electric dredges in contract
 In Non-Attainment areas, it may be required as a mitigation measures regardless

# Sustainable Water Side Construction

#### Social Equity:

- Consider wetlands creation, and wildlife habitats via beneficial Use of suitable sediments in areas of the port neighboring socio-economically challenged areas of the community.
- Require minority contract participation in dredging contracts.