Effectively Managing the General Conformity Process for Port Construction - A Case Study

Robert P. Newman, P.E. Vice President EA Engineering, Science, and Technology Inc. rnewman@eaest.com

Goals of Presentation

- Review of General Conformity
- How General Conformity applies to Ports
- Port of Baltimore case study

First – Air Quality 101

- Air quality regulations are developed both at the Federal and State levels (sometimes local)
- Prominent Federal regulations include NSPS, NESHAPS, NSR, and Conformity
- State regulations are part of State Implementation Plans (SIPS)
- Generally regulations are more difficult in areas deemed "Nonattainment" with National Ambient Air Quality Standards or NAAQS
- Nonattainment air quality areas of primary concern to Ports are Ozone and PM 2.5

What is General Conformity

- Rule issued in 1993 (CAA Section 176)
- Seeks to prohibit federal actions that would contribute to a SIP violation
- The other rule Transportation Conformity

Definition of "Federal Action"

- Federally financed construction projects on government property
- Water and wastewater plant construction funded by the USEPA
- Construction projects requiring a federal approval (i.e., USACE)

Pollutants of Concern

- Ozone
- PM₁₀/PM_{2.5}
- CO
- SO₂
- NO₂
- Lead

What is a Conformity Review?

- Evaluate the nature of the proposed action and associated air pollutants
- Determine if the action is exempt by rule (e.g., maintenance dredging)
- Calculate air pollutant emissions and impacts
- Mitigate emissions if regulatory thresholds are exceeded
- Prepare formal documentation of findings
- Publish findings for the public and regulatory community

Emission Thresholds

- Ranges from 10 tpy to 100 tpy depending on pollutants
- No official threshold yet exists for PM_{2.5}
- Need to consider both direct and indirect emissions
- Concept of "regionally significant"

Nonattainment Regions 8-hr Ozone Standard

Nonattainment Regions PM_{2.5} Standard

Case Study – Port of Baltimore, Masonville DMCF

- Major proposed DMCF consisting of contained area of 130 acres
- Area presently tidal open water
- High priority project for Baltimore Harbor which has a 1.5 mcy/year placement need
- Existing major DMCF scheduled to close in 2009

Project History

- DEIS developed over 2005/2006 timeframe (Draft DEIS issued in May, 2006)
- Many complex environmental issues were addressed
- Air analysis initially of screening nature, immediately went to refined study
- Construction start planned for Fall, 2006
- Completion by 2009

Construction Overview

- Crew A Demolition activities
- Crew B Pre-dredging of site
- Crew C, C1 Dike and spillway construction
- Crew D Cofferdam and pipeline reconstruction
- Crew E Storm drain relocation
- Crew F Mitigation, education center, trail construction

Sources of Air Emissions

- Marine diesel engines (tugs, dredges)
- Off-road equipment (pumps, excavators, etc.)
- On-road mobile sources (indirect sources)

Key Analytical Techniques

 Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data (EPA 420-R-00-02)

- National Mobile Inventory Emissions Model (NMIM)
- USEPA Mobile 6.2

Marine Operations

- Marine operations consisted of hydraulic dredge, hopper dredge, tugboats, and cranes
- USEPA approach develops load and emission factors for discreet engine types
- Emission factors developed through regression analysis
- Hours of operation projected to calculate annual emissions

Off-Road Emissions

- Performed using the EPA NMIM model (released April, 2006)
- Model requires information on fuel type, period of operation, region, equipment source classification codes, equipment technology, equipment population, and monthly activity distribution

On-Road Emissions

- Typically considered indirect emissions
- Consists of employee and delivery vehicles
- Mobile 6.2 calculates emission in grams/mile. VMT is used to calculate total emissions
- A representative "vehicle mix" was assumed

Total Air Emissions

•		СО	NOx	PM2.5	PM10	SO2	voc	
•	CREW A	1.855	10.032	0.274	0.278	1.674	0.245	
•	CREW B	28.568	149.716	4.337	4.413	24.060	3.588	
•	CREW C	23.215	144.904	3.690	3.696	24.430	2.634	
•	CREW C1	1.420	2.751	0.141	0.153	0.060	0.248	
•	CREW D	8.784	26.481	1.283	1.324	6.126	1.295	
•	CREW E	0.345	0.349	0.018	0.020	0.058	0.043	
•	CREW F	3.020	6.738	0.340	0.370	0.399	0.619	
•	TOTAL	67.21	340.97	10.08	10.25	56.81	8.67	
•								
•								
•	Emission	Emissions Percentage Distribution						
•		СО	NOx	PM2.5	PM10	SO2	voc	
•	CREW A	3%	3%	3%	3%	3%	3%	
•	CREW B	43%	44%	43%	43%	42%	41%	
•	CREW C	35%	42%	37%	36%	43%	30%	
•	CREW C1	2%	1%	1%	1%	0%	3%	
•	CREW D	13%	8%	13%	13%	11%	15%	
•	CREW E	1%	0%	0%	0%	0%	0%	
•	CREW F	4%	2%	3%	4%	1%	7%	
•	TOTAL	1.00	1.00	1.00	1.00	1.00	1.00	
•								
•								
•	Total Ann	Total Annual Emissions Compared to The General Conformity (GC) Threshold (tons)						
•	Pollutant	GC Threshold	2006	2007	2008	2009	TOTAL	
•	CO	NA	12.83	36.29	17.67	0.43	67.21	
•	NOx	100	60.66	180.58	98.77	0.95	340.97	
•	PM2.5	100	1.90	5.47	2.66	0.05	10.08	

SOx VOC

PM10

- NA NA 50

- - 1.94 1.68
 - 10.38

5.57

4.69

30.45

2.69

15.92

2.21

- 56.81 8.67 0.06 0.09
- 0.05 10.25

 \bigcirc

Next Step – Mitigation Planning

 Mitigation by technology implementation to existing port and regional sources

Mitigation by securing emission credits

Technology Options Being Examined

- Pre-combustion controls (e.g., exhaust gas recirculation)
- Post-combustion controls (e.g., emission catalyst)
- Idling restrictions
- Engine repowering
- Electrification
- Mobile source controls

Emission Reduction Credits Option

- NO_x credits currently scarce and expensive in the Mid-Atlantic region (+ 10,000/ton)
- VOC credits is a untried but attractive option presently being negotiated with the MDE and USEPA
- The potential for reuse of credits after project is complete

Late Breaking News

 A recent gantry crane electrification project has been determined to account for a NOx emission reduction amount of approximately 150 tpy

- A new CNG refueling station has the potential to reduced annual NOx emissions by 30 tpy
- Emissions are presently being verified and if correct will be incorporated into the general conformity mitigation plan

Conclusions

- The General Conformity requirements are as important to understand as any other environmental requirement affecting port construction
- Perform an initial "screening analysis" to determine applicability
- Work closely with regulatory agencies to solicit input especially on SIP issues
- Be creative in developing mitigation options